


3

3.2

Exercise 3.1

Provide an example of a distribution P(X1, Xz, X3) where for each i # j, we have that (X; L X;) €
Z(P), but we also have that (X1, Xo L X3) € Z(P).
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Exercise 3.2

»

. Show that the naive Bayes factorization of equation (3.7) follows from the naive Bayes independence
assumptions of equation (3.6).

o

. Show that equation (3.8) follows from equation (3.7).

. Show that, if all the variables C, X1, ..., X,, are binary-valued, then log % is a linear
function of the value of the finding variables, that is, can be written as >, a; Xi+ao (where X; = 0
if X =2 and 1 otherwise).
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Exercise 3.3

Consider a simple example (due to Pearl), where a burglar alarm (A) can be set off by either a burglary (B)
or an earthquake (E).

4

Define constraints on the CPD of P(A | B, E) that imply the explaining away property.

S

Show that if our model is such that the alarm always (deterministically) goes off whenever there is a
carthquake:

P(a' | b',e') = P(a' [°,e') =1

then P(b' | a',e') = P(b'), that is, observing an earthquake provides a full explanation for the
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Exercise 3.4

We have mentioned that explaining away is one type of intercausal reasoning, but that other type of
intercausal interactions are also possible. Provide a realistic example that exhibits the opposite type of
interaction. More precisely, consider a v-structure X — Z 4 Y over three binary-valued variables.
Construct a CPD P(Z | X,Y') such that:

e X and Y both increase the probability of the effect, that is, P(z" | z) > P(z') and P(z' | y*) >
P(zY),

e each of X and Y increases the probability of the other, that is, P(z" | 2') < P(z' | y*,2"), and
similarly P(y" | 2') < P(y" | ', 2").
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Assume that all variables are binary-valued. We do not know the CPDs, but do know how each ran-
dom variable qualitatively affects its children. The influences, shown in the figure, have the following
interpretation:

Exercise 3.5

Consider the Bayesian network of figure 3.14.

o X 5 Y means P(y' | #*,u) > P(y" | «°, w), for all values w of Y’s other parents.
e X 5 Y means P(y' | 2", u) < P(y' | 2°,u), for all values u of Y’s other parents.

We also assume explaining away as the interaction for all cases of intercausal reasoning.

For each of the following pairs of conditional probability queries, use the information in the network to
determine if one is larger than the other, if they are equal, or if they are incomparable. For each pair of

queries, indicate all relevant active trails, and their direction of influence. 4 QUMV B
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Assume that we have a Bayesian network over X1, ..., X, such that each node has at most & parents.
What is a simple upper bound on the number of independent parameters in the Bayesian network?
How many independent parameters are in the full joint distribution over X1, ..., X,?

. Now, assume that each variable X; has the parents X1, ..., X;_1. How many independent parameters

are there in the Bayesian network? What can you conclude about the expressive power of this type of
network?

. Now, consider a naive Bayes model where X1, ..., X, are evidence variables, and we have an addi-

tional class variable C, which has k possible values ci, ..., cy. How many independent parameters
are required to specify the naive Bayes model? How many independent parameters are required for an
explicit representation of the joint distribution?
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Exercise 3.8

Let B = (G, P) be a Bayesian network over some set of variables X’. Consider some subset of evidence
nodes Z, and let X be all of the ancestors of the nodes in Z. Let B’ be a network over the induced
subgraph over X, where the CPD for every node X € X is the same in B’ as in B. Prove that the joint
distribution over X is the same in B and in B’. The nodes in X — X are called barren nodes relative to

X, because (when not instantiated) they are irrelevant to computations concerning X.
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Exercise 3.15
Consider the two networks:
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For cach of them, determine whether there can be any other Bayesian network that is L-equivalent to it
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