

Consider a simple example (due to Pearl), where a burglar alarm (A) can be set off by either a burglary (B)

- a. Define constraints on the CPD of $P(A \mid B, E)$ that imply the explaining away property.
- b. Show that if our model is such that the alarm always (deterministically) goes off whenever there is a earthquake:

$$P(a^1 \mid b^1, e^1) = P(a^1 \mid b^0, e^1) = 1$$

then $P(b^1 \mid a^1, e^1) = P(b^1)$, that is, observing an earthquake provides a full explanation for the

Exercise 3.4

We have mentioned that explaining away is one type of intercausal reasoning, but that other type of intercausal interactions are also possible. Provide a realistic example that exhibits the opposite type of interaction. More precisely, consider a v-structure $X \to Z \leftarrow Y$ over three binary-valued variables. Construct a CPD $P(Z \mid X, Y)$ such that:

- X and Y both increase the probability of the effect, that is, $P(z^1 \mid x^1) > P(z^1)$ and $P(z^1 \mid y^1) > P(z^1)$ each of X and Y increases the probability of the other, that is, $P(x^1 \mid z^1) < P(x^1 \mid y^1, z^1)$, and
- similarly $P(y^1 | z^1) < P(y^1 | x^1, z^1)$.

Exercise 3.5

Consider the Bayesian network of figure 3.14.

Assume that all variables are binary-valued. We do not know the CPDs, but do know how each random variable qualitatively affects its children. The influences, shown in the figure, have the following interpretation:

- $X \xrightarrow{-} Y$ means $P(y^1 \mid x^1, u) < P(y^1 \mid x^0, u)$, for all values u of Y's other parents.

We also assume explaining away as the interaction for all cases of intercausal reasoning.

For each of the following pairs of conditional probability queries, use the information in the network to determine if one is larger than the other, if they are equal, or if they are incomparable. For each pair of queries, indicate all relevant active trails, and their direction of influence.

(a)
$$p(c'|d') < p(d')$$
 $D \Rightarrow c \Rightarrow 7$ (c) $p(c'|h') > p(c')$ $H \Rightarrow D \Rightarrow C \Rightarrow 7$ (f) $p(c'|h',f') = p(c'|h')$ (c) $p(h'|e',f') > p(h'|e')$ $H \Rightarrow E \Rightarrow F$ (g) $p(a'|he^{o}) = p(a'|h')$ (d) $p(c'|f) = p(c')$

$$\omega \cdot p(c'|f) = p(c')$$

3.6	χ_1, \dots, χ_r χ_r , has $ \operatorname{val}(x) = l$
	a. Assume that we have a Bayesian network over X_1, \ldots, X_n , such that each node has at most k parents. What is a simple upper bound on the number of independent parameters in the Bayesian network?
	How many independent parameters are in the full joint distribution over X_1, \ldots, X_n ? b. Now, assume that each variable X_i has the parents X_1, \ldots, X_{i-1} . How many independent parameters are there in the Bayesian network? What can you conclude about the expressive power of this type of
	network? c. Now, consider a naive Bayes model where X_1, \ldots, X_n are evidence variables, and we have an addi-
	tional class variable C , which has k possible values c_1, \ldots, c_k . How many independent parameters are required to specify the naive Bayes model? How many independent parameters are required for an explicit representation of the joint distribution?
	D. D(Xxx1 Xv Xx) hard b. (b) params (k=3) Q Q B 1x Variables than down have parents
	BN needs (n.k.) (k (L-1) paramens in bout
	Jain distributed head the params
	2) = 1 (H) = (H) · H = (H) · H = (H)
	Orlmost Same agressive power as fall point distribution
	Orlmost Same agressive power as foll joine distribution 3). Natur Boyes Need (n-1)+ k.n. params
	join distribura road k-2" params
3.8	Exercise 3.8
	Let $\mathcal{B} = (\mathcal{G}, P)$ be a Bayesian network over some set of variables \mathcal{X} . Consider some subset of evidence nodes \mathbf{Z} , and let \mathbf{X} be all of the ancestors of the nodes in \mathbf{Z} . Let \mathcal{B}' be a network over the induced
	subgraph over X , where the CPD for every node $X \in X$ is the same in \mathcal{B}' as in \mathcal{B} . Prove that the joint distribution over X is the same in \mathcal{B} and in \mathcal{B}' . The nodes in $X - X$ are called <i>barren nodes</i> relative to X .
	X, because (when not instantiated) they are irrelevant to computations concerning X.
	B' & Det XI - XI be a topological ordering of X
	$P_{B}\left(X_{1}-X_{0}\right)=\frac{1}{i^{2}}\left(X_{i}\mid\rho_{A}\alpha_{i}\left(X_{i}\right)\right)$
	Pe(X, - Xx, Z) = # P(X; parts(N)) - 7 266 P(2: parts(2i))
	$P_{\mathbf{B}}(x_1-x_2) = \frac{P_{\mathbf{B}}(x_1-x_2)}{P(\ge x_1-x_2)}$
	Exercise 3.15 Consider the two networks: A B B Consider the two networks: A Consider the two networks:
3.15	Consider the two networks:
	B B 366
	$ = P_{\mathcal{B}}(\lambda, \dots, \lambda_{\nu}) $
	(a) (b) For each of them, determine whether there can be any other Bayesian network that is 1-equivalent to it.
	if G1 and G2 have the same skeletin and some V-SMUchurs, Any are I-quinder
	(D) (ALC)
	D (ALC) B) No other.
	(CL) (B)

(CLD|B) (ALD|B)

(CLD(B) (A) CLB) (B) D(B)