


• Gaussian Distribution
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can view the information matrix as directly defining a minimal 2-map Marker netmrbfnp.

whereby nonzero entries corresponds to edges in the network

- Gaussian Bayesian Network
A Gaussian Bayesian Nettuno is a Bayesian network all of whose variables

are continuous
.
and all CPDS are linear Gaussian

let Y be a linear Gaussian of its parents Xi . . - . - Xk
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Assume that Xi - - - Xk are jointly Gaussian NIU ,
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The distribution of Y is a normal pts) = thus, 65 ) Uy = Botts'll 05=6--1 FEB

The joint distribution over {✗i. 43 is a normal where Artin ; } ] = ¥TBjEj

if B Is a linear Gaussian Bayesian network, then it defines a Gaussian joint distribution



let {× . }} have a joint normal distribution paid .- NFL"u%[¥¥:] )
then the conditional probably is a linear Gaussian
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let X={ Xi . . . .. Xn } and p be a joint Gaussian distribution over ✗ .

given any ordering Xi - - Xn won X
,

can construct a Bayesian Network graph 6
and a Bayesian network B oven G such that

Palm E {Xi - Xu}

CPD if Xi in B is a linear Gaussian of its parents

G is a minimal 1-map f p
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Xi-11 Is a linear Gaussian of Xi
each pair of Hi , xp is marginally correlated , the covariance is dense .

each pair of Hi , Xjl is conditionally independent gown other variables

i. the information matrix is tri -diagonal
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{marginally independent . : covariance matrix is sparse
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conditionally dependent , " information matrix is dense



• Gaussian Markov Random Fields

NIU :E) = - I A-ut-2
-'

A-at

= -I lxtjx - 2×9ut ut] a)

PIN ✗ expI
- EXT ✗ + fun]

ITH H
-I XTJX + HUH [ * TEXT] ] + [ hi ]

-

- I-É Xi Ji :X: + hi Xi -1T¥
,

-É X-it.gg

the information form immediately induces a pairwise Markov Network

the node potentials are derived from the potential near and d-
agenot elements of information matrix f-£ Xi Ji :X: + hi Xi )

the edge potentials are derived from the off -diagonal elements of the information matrix I-É X-it.gg )

when Jj -0 then is no edge between X : and Xj in the model . Alhkspondy directly to the independence
assumption of the Markov network .

Any Gaussian distribution can be hopeseated as a pairwise Markov network

with quadratic node potential and edge potential . often called a Gaussian Markov random field LGMKFI

Ton any pairwise Markov network with quadratic node and edge potential
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can reformulate any such set of potentials in the log - quadratic form
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A Markov Network defines a valid Gaussian densay
⇐ J is a pd Math

A Quadratic Harbor Random Field parametrized by T is diagonally dominant if
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A quadratic MKF parameterized as his is pairwise normalizable -f-
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pairwise normalizable ⇒ valid Gaussian MRF


