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Bayesian Network
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it from probabilistic influence that is causal in nature

(X :L NonDescenedantslx :) / ParentsHill
each node ×: is conditionally independent of its nondescendanes given it parents

• 1- maps
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• 2-maps to Factorization

Difficulty Intelligence

grade spy

for any distribution P of which G is a 2-map . Zeus ) c- up)I 1 1
we can decompose P by local independence of a
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letter

PH.D, G.1. 5) = plz) - PIDK ) . PCGIDZI . 1>(4%134) - Pls / 42, D. G) total chain rate

= Plz ) . PLDI.pk/D.2).Pl4G)-plsK) independence,

the factorization applies to any distribution P of which G is a 1-map

P factorizes according to G if P can be expressed as

Pali - . - K) = TIP (X:/ Parental :D

A Bayesian network B-ulh.pl where P factorizes oven G
,

and p is specified as ODDS associated with nodes f- G
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• D- separation
1. Direct connection

☒→ ⑨ Hk 's / t )
2. Indirect causal effect / Indirect evidential effect

④¥②¥③
intelligence Grade wean ☒# ) (✗↳ / 2- )

( YLXH )
causal trail / evidential trail is active

-ff z is not observed

3. Common cause

⑦ intelligent ☒ Ig ) 1×29 / Z )
④
#
⑤

SAT Grade

active If 2- is not observed

4. common effect
④¥j④ HH ) WITH)

active iff (2- or one of Z 's descendants) is observed

let G be a Bayesian Neenah structure
.

X,←→ -
- - ⇒ Xn a trail in G

Let Z be a subset of observed variable

the trail XF→ - -⇒ Xn is active g-men
-2 if

whenever we have a restructure ✗ it → Xi ← Xia
, X ; on one of its descendants is observed

no other node along the trail is in Z

Difficulty Intelligence
my

not attire when neither Gm L is observed

not active when {L , Z } ate observed
Grade SAT

1
letter

one node can influence another -of thee is any trail along which influence can flow

Let ☒
,
¥

.
I be 3 sets of nodes in G. the say that ☒ and I are d-separated g.mn#(d-sepalXXiYlz ) )

if there is no active trail between any node ✗ c- ☒ and YEY" given ZZ

LCG)={1*1-912-2 ) : d. sepal☒iY / Zz )} the see of global Markov independents

coherence not descendant, not parent
d

Any node is d-separated from its non - descendants given its parents Difficulty Intelligence
descendant

and not given other nodes
↳Gracie ¥1

trials from top are blocked by giving the parents / letter→ /
Trials from bottom an blockedby v. structure Hippy←
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• Soundness and fompkteness

① If a distribution P factorizes according to G. then ZCG) c- UP)

(if ✗ and Y are d- separated g-uonz, then 1×4 It ) in P)

A distribution P is faithful to a f- 1×1-4 / Z) c- HP) ⇒ d-sepalxis / z )
( if any dependence in p is reflected in d- separation of G)

Even if a distribution factorials over G. it can still contain independencies that are not reflected in G.

g.
PIA .B) = PLA . B) .
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☒ ¥÷¥

There's no independencies in G.
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i. p factorials over a

② if IXLY / z ) is in all distributions P that famine oven G
,
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③ if ✗ and I are not d- Sep ginn
2- in G. then ✗ and 3 are dependent in some p that faitmiaes oven G
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Algorithm for finding teachable node via alone trails
def d-Sep- teachable ( G : Directed Graph , X : node ,

Z : SekNode > ) :

# phase 2 : Mark all ancestor of 2-
Z
- op =

zoopyl ) ; 2-
- ancestor = ¢

white zip =/ § :

F- zip to] 2-epitaph :] like breadth
- first search

. but
reversing

the d-meth f- edges
if Y 4 Z

- ancestor :

Z
- op = zip U Parents 141

2-
- ancestor = Z

-

ancestor V41

# phase 22 : traverse active trails

1={1×11^1} ;
# IX.f) means aarohy ✗ from X's children

visited =P ; K=p # K keeps track of all reachable nodes from ✗ g-non 2-

while Lto :

4. D= Lto] , ↳ Ltl :] # Y is a teachable node from ✗ g-non 2-

if 14.d) c- Visited :

continue

visited = visited V13. d)

if 44 -2 :

R = KVLY )

if D= 1
" and Y¢z :

"¥÷⑤
fon n c- patents / Y ) :

L= LUI n . f) p⑤←¥③ is an Atm trail if 's is not g.mn
evidential effect

fan n t children 141

L =L Vln , b) p⑧En common cause

else if D= d :

'⑤→④ .

if 4 ¢2 then :

fmntohildunKt.PsnO-i_Ox@causaleffeotL-Luln.b)

if YE Z- ancestor :
fr n in parents 181 p④→v⑤É④ common effect W- structure )

L =LVK.tl active if 9 is ancestor of observations

return R



- 1- equivalence
different BN structures can be equivalent in that they encode same conditional independence assertions

④→②→④ ☒←⑦←④
⑦→

⑥

( ✗ 1-4 / z )
2 graph structures k k

. Ate 2- equivalent of Ilk, ) --2114

if p factorizes oven 14
. it factorized oven ka

the skeleton of a graph is the mode and edges Wbhout directions

-if hi and op have the same skeleton and same see if v-structures , they ate 1- equivalent

covering edges for V-structures

④%
↳

②
✓

v-structures

a vstnktue ✗→ 2-←Y is an immorality if that is no direct edge between ✗ and 9

if there is such an edge , it's called an Conery edge for the v-structure

G. and Ga have the same skeleton and same set of immoralities ⇐ Gi and Ga are 2- equivalent

• Minimal I- Map

A graph k is a minimal 1-map for a set of independencies 2 if

{
① it is an 2-map fit
②

lemony and edge tenders it not an 1-map



- Algorithm for finding Minimal 2-map Bayesian Network of Distribution P

def build
- minimal

-
2-map (

X : listen>
. 2 : list < Independence> I

set G to an

empty graph over X

for -1=1 , - - in

a = { × .
- -

- ✗it } # candidates for parents of X :

fm U
'
E {X . ; - -

. X:-, }

if y' c u and ( Xi 1- {Xi , . . . . Xii ]- u ' Ivi ) c- I

U= U
'

II be this stay U is a minimal see satisfying {×:L Ex, . . . ✗it} -U / U }

for Xj tu

add edge ☒→④
return A

- Conclusion

A Bayesian Network is a { factorization of p
I- map of p


