)
(). Z» am SWTVM P gtk T

W Wmﬁﬂs e Ww o&Mm Hhe amww o o

(o /VAL/CJ/ f)w‘

Sl 03 g

T ke o (0D T Amrwwﬂ Hm% (e S0

W”"M elsie m/ ”’”W ewmse‘we\ Goen o it m[m;LTMAU(

o whe we ppbe od o at o, e o) wj"’w watle e g s
b et \
fiE e TR do o ow. This we g wﬁm sl A o g > e othe)

[ike ot ol 7 S0

(CS228 Homework 4

(\ o I A
Ek(@:,@,flfﬁja[iﬁm@)= M{ "

il
pugl)

Fw \

A
b P\ ‘m ¥ = Igv [‘HV?MWE4TCH/\ J

A C: {
R Instructor: Stefano Ermon — ermon@stanford.edu

M

Available: 02/17/2017; Due: 03/3/2017

1. [20 points] We have a data association problem where there are K objects and we are given K observa-
tions. Each observation corresponds to a single object, and we are given one observation for each object.
However, we don’t know which observation corresponds to which object, and we would like to infer that
using a probabilistic model relating observations to objects. Specifically we have

e K objects uq,...,ux

e observations vy,...,vx, where Val(v;) = {a1,...,ar} (so v; is a discrete random variable), where
each observation corresponds to the appearance of one object and there is exactly one observation of
each object

e correspondence variables C1,...Ck, where Val(C;) = {1,..., K}; C; = k denotes that measurement
v; is derived from object ug W)

e a known appearance model for each object ug, Py(v; = a;|C; = k). 7R D (,on

Note that because of the mutex constraints, the correspondence variables C, ..., Ck will be a permutation
over 1,..., K. We also assume for simplicity that all permutations are equally likely a priori.

We wish to compute the marginals P(C;|vy,...,vk), fori =1,..., K, using Metropolis-Hastings (MH) to
sample the correspondence variables. We will start with an arbitrary assignment to Cq,...Ck, and take
MH-steps. The proposal distribution that we will use randomly picks two correspondence variables C;, C;
from a uniform distribution over all pairs of correspondence variables, and swaps their assignments.

(a) [10 points] Compute the acceptance probability for each MH step.

(b) [5 points] Suppose we have run the MH sampler for a long time and collected M samples (Cy[m], ..., Cx[m])
for m =1,..., M after the chain has mixed. Give an explicit expression for estimating the marginal
P(C’,»|U1, PPN ,UK).

(c¢) [5 points] Your friend Geoff Gibbs hears about your MH algorithm and suggests that you can also
consider using Gibbs sampling to compute your marginals. Briefly explain why this will or will not
work.

2. [20 points] Multi-conditional Parameter Learning, Markov Networks

In this problem, we will consider the problem of learning parameters for a Markov network using a specific
objective function. In particular assume that we have two sets of variables Y and X, and a dataset
D= {(z',y'),..., (™, yM)}. We will estimate the model parameters @ = [0; ...#,] by maximizing the
following objective functlon.

9(0;D) = (1 — a)ly|x(0; D) + al x|y (6;D)

where /x|y (6; D) means the conditional log-likelihood of the dataset D using the distribution Pp(X | Y)
defined by the Markov network with parameters 6 (similarly for fy|x). Thus, our objective is a mixture
of two conditional log-likelihoods (0 < o < 1). As usual, we consider a log-linear parameterization of a
Markov network, using a set of n features f;(X;,Y ;) where X; and Y; are some (possibly empty) subsets
of the variables X and Y, respectively.

(a) [10 points] Write down the full objective function g(8; D) in terms of the features f; and weights 6;

(b) [10 points] Derive B%i g(0; D): the derivative of the objective with respect to a weight 6;. Write your
final answer in terms of feature expectations Eq[f;], where @ is either: the empirical distribution of

our dataset P; or a conditional distribution of the form Po(W | Z = z) (for some sets of variables
W, Z, and assignment z.)

3. [10 points] Expectation Maximization in a Naive Bayes Model

Consider the Naive Bayes model with class variable C' and discrete evidence variables Xy, ..., X,. The
CPDs for the model are parameterized by P(C' = c¢) = 0. and P(X; =2 | C = ¢) = 0, for i = 1,.
and for all assignments z; € Val(X;) and classes ¢ € Val(C).

Now given a data set D = {x[1],...,x[M]}, where each x[m] is a complete assignment to the evidence
variables, Xi,..., X, we can use EM to learn the parameters of our model. Note that the class variable,
C, is never observed.

Show that if we initialize the parameters uniformly,

(2]
\
S S S @{’/ ®

| Val(C)| zile ™ Val(X3)|

for all z;, ¢, then the EM algorithm converges in one iteration, and give a closed form expression for the
parameter values at this convergence point.

n L AT A6 f-stp:
). {alow) = Miﬂ MM(M » (%> {;[=z La'b(e o Yj)ww 3
-+ M), CTAL 56
-Z %{ Sy O‘F(?%Q «mjmﬂ b& Zll mmw W - 7 =)
- 76 2 huonym L@MWJ Z, bul) (o] o1 ig@ |
) i, -~ NGLDE ¢
Laslod)= = 2h PUADa) wf% Gl %M@W’J P
% La[ﬂm/guf (7 b Plooag m))] ;éte) Bl |
~% hyzipie) ~Sp. . 6]t BOCE)
i %9‘%} o % ! E @m .- Al 9@) " %»lm Hoes La
ﬂ({?}: Um{) {’ile/'D> & %{m ¢) J &W(mﬂ) C?”]MU'”) (mm}\m ol mZ bule) =
A % () by 200005 8) 4 A _ Pﬁﬁ"ﬂ/f? Al - ’ o Ie] U %9@(,@‘!)
} ?QF%%WH [% g Z ¢ Pl/x;tr@'/knm[“‘g L), v = '{Z ki %9{“ &
/X
we 2100 - T (%E‘MW W1 1]VN et ﬁ ,;i«xw Y20
e - Z o n by - - sy - 2
! Z W Tﬂlf BEPRRRE i V(}ﬁ[;?/\ﬂ)
| 0 Mm%m 1)+l y) 1 g - Aol Y5
2@ %z(m@ - ZWM = Judo] = ~Z#fn-x) (Lam;«&-w + ZAlwal U
? ?‘ﬂx \”/Mm]) P /M\T /‘Wﬂ“ Aitnd, O,) VV% L= #g\((:/x,ﬂ -
a) ﬂ(ﬁ 2 Ml VAW L@ \w\(o V %
WLI / Eﬁw M ﬁ' ol + Z L@PV"W L 08) V- Z e
Sini - ult ol — AL
% %EWM %DD?HM] = M L@M&JH Z % “@t(}mn: Lab(/ﬂ/ﬂﬁm] b k)= "
t %\ % (o, 909 ’ﬁ[tm 20K;8) 4o %W],ol]}) o M/
0 {1 Foah jM w0 : Ble) = Tple Jl B cl =
_ %#me) i () Bl bhod] 1 85T Hod)) - p(crml«m ﬁgxmﬁ;};
- % 701 - (W2 %L el mwzﬁ:m?«\%@ ; Wm/l Ton
et 2/ - ‘JE #{}-}\mms
- WC_/

w ()= 1 (Cm) . ohig—on b

O (C0m
ouy- Tl
L=) e M cewlr)
~ d prk) = = ¥ K 6w (%)

LB ?]mgy 5%,) . %jmy(jw)ﬂy)’/g

Logrept, A M@&s | %f

[60 points] Programming Assignment !

In this homework, you will apply Gibbs sampling to a simple Markov random field model for image
restoration. In an image restoration problem, you are given an image corrupted by noise X and you want
to recover the original image Y (see Figure 1 and Lecture 4).

(a) Image denoising task.

X: noisy pixels
Y : “true” pixels

(b) Graphical model structure, for N = M = 3.

Figure 1: Image denoising with graphical models.

Let = {z;;} denote the observed image, with z;; € {—1,+1} representing the pixel at row ¢ and column
j. Assume a black-and-white image, with -1 corresponding to white and 41 to black. The image has
dimensions N x M, so that 1 <¢ < N and 1 < j < M. Assume a set of (unobserved) variables y = {y;;}
representing the true (unknown) image, with y;; € {—1,+1} indicating the value of x;; before noise was
added. Each (internal) y;; is linked with four immediate neighbors, y;_1 ;. ¥i+1.;, ¥i.j—1. and y; j+1, which
togethemarerdenotedwynigyy. Pixels at the borders of the image (with i € {1, N} or j € {1, M}) also have
neighbors denoted yy;, j), but these sets are reduced in the obvious way. We denote E the corresponding
set of edges. For example, the pair ((1, 1), (1,2)) € E, but the pair ((1,1),(2,2)) ¢ E. The joint probability
of y and x can be written (with no prior preference for black or white):

N M
1
I ijTig BYi;yir 51
o) g e o{ T oo | 2
i=1j=1 ((4,9),(#,5"))€E
1 N M
= exp {nzzyzszj + Z Z/ijyi’j’} (2)
i=1 j=1 ((3,9),(7,5'))€E
where ’f‘W{A— sheervagion Pvtmlexh MUMM}U"L fWWL

Z = ZGXP {77 Zyijfﬂij + B Z yijyi’j’} (3)
Y, T

.3 ((,5),(#,5"))EE

(Notice in particular that each pair of neighbors, y;; and y;;/, factors into the formula only once, despite
that each variable is a neighbor of the other. Failing to account for this will lead to double counting of g
values.) This is equivalent to a Boltzmann (sometimes called Gibbs) distribution with “energy”:

E(y,x)=-0Y yijzii—B Y. Uil (4)
1)

((@,5),(#",5"))EE

1 Assignment adapted from Cornell’s BTRY 6790, instructed by Adam Siepel

The system will have lower energy, and hence higher probability, in states in which neighboring ;; vari-
ables, and neighboring y;; and x;; variables, tend to have the same value (assuming 7 and 3 are positive).
This captures the fact that each noisy pixel z;; is likely to be similar to the corresponding “true” pixel
yi;, and that images tend to be “smooth”.

There are algorithms for deterministically estimating y given an image & but we will here use the alter-
native approach: we will devise a Markov Chain Monte Carlo (MCMC) algorithm to sample values of y
conditionaltom®. Here are some advantages over the deterministic algorithms:

i. It is very general, and can easily be extended to more complex graphs.

ii. It provides great ﬂex1b111ty for quantlfylng the uncertainty of y (and, potentially, for the parameters
n a’nd /8) 77‘%'/ H/J/ 6‘*‘
iii. It is relatively stralghtforward in this setting to derive the exact conditional distributions for nodes

given the Markov blanket, so Gibbs sampling is possible, and one need not worry about the acceptance
rate for proposed samples.

You will apply your methods to two small, black-and-white images that have been made available with

the problem set. These two noisy images, and the original, undistorted image from which they derive,

0 fack balet M)P are available both in PNG format and in a simple text format that lists each coordinate pair (7,j) and

s s ‘M@WS the corresponding value of z;;. You may find it useful to convert between this text representation and a
Py il % viewable image format.

mm /Mr‘m ke, g . . . - - . oo . .

J “ﬂ” A ol s e s (a) [b points] Derive an expression for the conditional probability tha.t plxe.I (,7) is black given its

~ Rl - PO Markov blanket, i.e. p(yi; = 1{yar(i,;)), Where ya(; ;) denotes the variables in the Markov blanket of

Lo [) = . : . .
: gy PP Yij (but you should be explicit about which variables are included). Your expression should take the

| j; /;;J«i = tr) form of a logistic function and should depend only on 7, 8,and yas(; j)-
ki) - ?}?’n‘\14§‘57;7 $i))@fj ﬁw*)

ol WWM y(b) [10 points] Outline a Gibbs sampling algorithm (in pseudocode) that iterates over the pixels in the
o gy 4.1 image and samples each y;; given its Markov blanket. Use the simple approach of sweeping across the
o b image in row-major fashion on every iteration of the algorithm. Thus, an “iteration” will generate
%rMMM wopZ, 1) B complete new sample of y. Allow for a burn-in of B iterations, followed by draws of S samples.
sofe Gy~ () You may assume 7 and [are fixed constants. How can we show in our case that ¢therequilibrium

. distribution is in fact the posterior distribution p(y|z)?

nicolizatin , A hsrmin).
o j,mi wvm”)
b {\ui sy (¢) [15 points] Implement your algorithm and apply it to the image with 20% noise (noisy 20.png,txt).

1. Use valuesof n =1, 8 =1, B =100, and S = 1000. On each iteration of your algorithm, compute the
Wjif* gl energy E(y,x) for the current sample of y and output it to a log file, keeping track of which values
agpe o fh - P AL correspond to the burn-in. Run your algorithm with three different initializations - one in which each
m:;; gm M@%Z‘ MW‘ ¥i; is initialized to x;; , one in which each y;; is initialized to —x;; , and one in which the y;; are set to

—1 or +1 at random. Plot the energy of the model as a function of the iteration number for all three
] chains and visually inspect these traces for signs of convergence. Do all three seem to be converging
- P 7 [wiﬂ‘i to the same general region of the posterior, or are some obviously suboptimal? Does the burn-in seem

) to be adequate in length? Is there substantial fluctuation from iteration to iteration, indicating that

i ““““ 7 the chain is mixing well, or does it become stuck at particular energies for several iterations at a time?

fhn P“‘”tjﬁ M\x\
e gl o e st

- Z iy f’“q

©. i /vﬁﬂwfﬂfwﬁ . vaﬁd) [10 points] Have your program output a restored image after completing its sampling iterations, by
e thresholding the estimated posterior probabilities for the y;; variables at 0.5 - i.e., by estimating the
“true” color of each pixel (i,j) as:

Yij =
-1 otherwise

0 original 0 %10 noise N reconstruction /0 original reconstruction
[0 L;j 100 y(:w) 100 w) 100 L iw) ,f,u) ‘d’)
[\ 100 1
s >l PR — RS pi® 5
/e w0 o 200 ? / 1 /
100

100

0

10 {

o f
2z

s

" T T
Ribs Sompk ol Pt ik
Bibns Wfd i ol S%wm

=

200 300

[the %?‘V& Shehat “6‘*{“&«"% [Wmm
¥ s e Ghsideen A fobl W
A g wstatio

N

-

L

IS

0 Ay A
dsribin b L =
i

o Lle

)

N

0 200 300 100 200 300

Z(I)O
To estimate the required posterior probabilities, store a running count ¢;; of the number of (retained)
samples for which each y;; = 1, and then use the Monte Carlo estimate:

1 1
p(yi; = 1|@) =~ 3 Z 1(?}2(;) =1) = 5 Cii
t

(5)

where yl(;) represents the ¢! sample of yij. Restore both the 10% - and 20% -noise images in this
way, using the same values of 1, 5, B, and S as above. Evaluate the quality of the restoration by
computing the fraction of all pixels that differ between the restored images and the original image.
Prepare a figure for each the the two images, showing the original, the noisy version, and the restora-

tion side by side.

[10 points] If you have implemented your algorithm correctly, your restored images should be quite
close to the original. But is this because you have a clever algorithm or just because the problem is
easy? To examine this question, implement a trivial reconstruction algorithm that sets each ¥;; equal
to the consensus (majority) of its neighbors (including x;;), and iterates a few times until convergence
(use sequential rather than batch updates, as in Gibbs sampling. This algorithm need not converge in
theory, but quickly do quite often in practice. To be safe, you can force it to terminate after, say, 30
iterations.) You should be able to get this program working quickly and easily by reusing code from
your Gibbs sampler. However, note that in this case, you should not average over samples (there are
no samples here) but instead should use the final value of the y;; variables for your restored image.
Run this program on both images and compute its restoration error. Include figures for the images
restored in this way. Does the Gibbs sampler do better than the trivial algorithm? Why or why not?

[10 points] While the Gibbs sampler is useful for obtaining marginal posterior probabilities of
interest, much of its appeal derives from its flexibility in estimating posterior distributions for more
complex features of the model. To get a sense for its flexibility, use your Gibbs sampler to estimate
the posterior distribution over the number of pixels in the “Z” in the image, which approximately
falls in the rectangle from (i = 125,57 = 143) to (i = 162, = 174). Using the same parameters as
above, simply count the number of cases of y;; = +1 within this rectangle for each retained sample,
output one count per iteration as your sampler runs, then use their relative frequencies as an estimate
of the posterior distribution of interest. Plot a histogram showing these relative frequencies for both
images and comment on any differences between the two estimated posterior distributions.

