(CS228 Homework 3

Instructor: Stefano Ermon — ermon@stanford.edu

Available: 02/03/2017; Due: 02/17/2016

1. [4 points] (MAP and MPE) Show that marginal MAP assignments do not always match the MPE assign-
ments (Most Probable Explanation). I.e., construct a Bayes net such that the most likely configuration
of all variables does not agree with the most likely assignment to a single variable based on its marginal
probability (the value that maximizes the marginal probability of a single variable, i.e. after marginalizing
out the remaining ones).

2. [15 points] (Variable Elimination) Suppose we wish to perform exact inference over a chain Markov
Random Field given by X; — X3 — ... — X,,. Assume that each variable X; has |Val(X;)| = d.

(a) [5 points] Derive an O(n3d?) algorithm for computing marginals P(X;, X;) over all n? variable pairs
X, X;.

(b) [3 points] Since we are computing marginals for all variable pairs, we can store computations done
for the previous pairs and use them to save time for the computations of the remaining pairs. The
key recursive relationship that makes this work is the following equation (for ¢ < j — 1):

P(X;, X;) = Y P(Xi, X; 1) P(X;]X;1) (1)
X,

Prove that the equation above holds.

(c) [7 points] Construct a dynamic programming algorithm that computes marginals over all n? variable
pairs based on the recursive relation in (1), and achieves a running time that is asymptotically faster
than O(n3d®). Describe the time complexity of your algorithm in terms of n and d. Note: Make sure
to clearly specify how each of the probabilities P you use are computed.

3. [8 points] (Clique tree calibration) Suppose that we have a clique tree over a set of factors F with
cliques C1, ..., Cy, which we have calibrated using sum-product message propagation so that we have all
messages 0;—, ;.

(a) [4 points] If we modify a factor in some clique C;, which message updates do we have to perform
to recalibrate the tree?

(b) [4 points] If we modify a factor in some clique C;, but we just want the marginal over a single
pre-specified variable X}, which message updates do we have to perform?

4. [18 points] (Importance Sampling) Suppose we have a distribution P(X, F) over two sets of variables
X and E. Our distribution is represented by a nasty Bayes Net with very dense connectivity, and our sets
of variables X and FE are spread arbitrarily throughout the network. In this problem our goal is to use
the sampling methods we learned in class to estimate the posterior probability P(X =« | E = e). More
specifically, we will use a tree-structured Bayes Net as the proposal distribution for use in the importance
sampling algorithm.

(a) [4 points] For a particular value of and e, can we compute P(x | e) exactly, in a tractable way?
Can we sample directly from the distribution P(X | e)? Can we compute P'(x | e) = P(x, e) exactly,
in a tractable way? For each question, provide a Yes/No answer and a single sentence explanation
or description.

(b) [14 points] Now, suppose your friendly TAs have given you a tree network (each variable besides
the root has exactly one parent) that defines a distribution . They tell you that Q(X, E) is “close”
to the distribution P(X, E) of the nasty network. You now want to use the posterior in @) as your
proposal distribution for importance sampling. You now must perform the two steps of importance

sampling:

1.
samples x[m] ezactly from Q(X | E = e) using only tractable techniques.
at the level of pseudocode, and should indicate the specific distribution

Show how to sample from the posterior in (). More specifically, describe an algorithm for drawing

You answer should be
that each variable will

be sampled from, and an explanation of how you computed that distribution.

ii. Now you must reweight the samples according to the rules of importance sampling. You want
your weighted samples to accurately represent the actual posterior in the original network P(X |
E = e). Show precisely how you determine the weights w[m]| for the samples

iii. Show the form of the final estimator P(X =« | E = e) for P(X

=z | E = e), in terms of the

oy Ay samples from part i, and the weights from part ii.
| —b— fiot
2.3 —0 00 3. %w; 0 o A
' ' oy fo Mot SE) g
Pl = &= Rt WW w%”a ” # M
71 z muﬂ%% » W {w "WM /f\/ . &15&
-1 = A
JZZWHZM% —:rfm,\y J‘oﬂm&%%##mwmw wd‘f%
TR A ke Biag WS v A K
4= =, iﬂw Yol - M oA sy mm%a 2 WGL
i , 3 o o oge g o v gl
St B JW’»WWJ Y CJ i o i fitme {)ﬂ* b vy 4 ol digs ouh #- X € LY
:%%&ﬁ)ﬁnww “WW Al {MMCAVXCWMWILC%J
Y By S i Wﬁ ot e o shankeor Py
h) 2, 0V
L)
TR da i e) o el gy ey
iy, = T@NM #()(M Zw,x,),.zé(md whd gt 1@“’" mileucin (sz) % sk)7[[3) Leh) (1) Ew[%J;) \,E& s 2
. “ ZHoH oy o(#e) oY - e BIOT ot o wt b Plx/t fE-0) = Fa 15041 ’SEMM A
hy- 7 g “ 1= s Zhb FHVY B WM o g0y g dod o “band oo pUSle: [oy L6052kl
f Z T e 42;4 (4 Z i) prfinsn A it ke mancd g E
, vlz "ot o i ol o0 8 o4 e - 4 [aunr-gpens T
4]% o (% [?vv\‘\ . (0{ ’Vl) “"“& ﬂemj o o)) Em[iix_/ﬂ W‘w/@m‘)]
200 pey) < 2 POG Y) d{ T
g dienbige - e ol P a gl 12)
== w Py %) Hh 0. 0 o A i ‘
%WJ%W (6L | %) ok st ”‘“ v ‘“”‘W}"’* iy 4 £ By o b ol they o oyl bl o
~ T, ' S
Tt “f Fﬁ‘ M]MJ P(fn) wil ok W ;7
) Y@vrp{w wmwwﬁ s, etk &
2(C). P = 7 P ol 5 T by ﬁﬁmwm@ Qi) - mw[:.%
=, o) 7ﬂ~ #/ s -7
vol eliminadio ® Y 4E ol jeE ST ¥ Rlbw)
DU, X) = Vo 3 e) =T Mlmpn) ki o '”W %mmw qM
qan/SWL ol ol) = algnti viJ (WWMMPMM&¥%@]1
MBI P
ﬁw =L Ik s ol ~4;\u.\ 1Ve] L (b, 67 A W
b1, %) - iﬂ)% (@) We de " ot "”Mmb ;im,\:zﬁ L W) A st Pixle) hue 7Dw *J k
' ki . @w?b@g(ﬁ(;,e:,w,f ﬁm fo ,,d %ajmm T b
Pyly) ok gl y o iy 1) w5 Do (Rg) T
ng; bt
T ey AM‘ bl ot + o by - T
[O 2
’ WM
lh Y% ka WP«@W/ W@ 4M el D)?WW%
(et e M k)
7 oon nb o whal e por= IO
7Dw T e P
= () e p) - Mo 0]y A i) = T Pehip)
P(fm R .
ke G55 ko sl oy of £5,%97 ke . o ohen b A5 p53
Ptz Mhaﬁ mgul

ot Bt patrs) - T b))
w15 | us)) wre- ,
W T pLs])

[55 points] Programming Assignment !

In this programming assignment, you will design algorithms for reliable communication in the presence of

noise. We will learn state-of-the-art techniques that some NASA missions use to communicate from deep
2

space, and in the process help The Martian return home.

The Mars Rover is trying to communicate with mission headquarters on Earth. The message the Mars
Rover wants to transmit is a binary sequence X € BY of N bits, representing an image. Here B = {0, 1}.

To deal with transmission noise, the Mars Rover appends N redundant bits to each message to allow for
error correction (using an error-correcting code). The redundant bits are chosen using a clever scheme:
themmessageristencodedrast Y =GXuthroughrarspecialmatrixeGrenB2Y>X®, a generator matrix ? that you
can treat as a ”constant” for the purposes of this assignment. GFis'chosen'such thatthefirst"N bits'of ¥
arerequalitond®, while the remaining N bits are redundant “parity checks” (here GX is computed modulo
2, s0 that Y € B2Y). The encoded message Y € B?Y obtained this way is special because it is a codeword:
the Mars Rover and mission headquarters have agreed thatt@llWwalidvmessagesroricodewordsiarersuchithat
HY v=0nwherenHvisrarpre=specifiedsbinarysparityschecksmatrizesesRY$2Y . The matrices G and H are
paired, and chosen so that multiplying by G creates valid messages (codewords), and H can be used to
check for errors in a received message (on Earth). Mathematically;"HG =0y so that HY"="HGX =0"for
any input message X.

This codeword Y € B2 is then transmitted through deep space back to the mission control on Earth
who then receives it as the noisy Y. The decoding process refers to the procedure of recovering the ground
truth codeword Y (and thus also X, the first N bits of Y) from the noisy version Y. We will focus on
error correcting codes based on highlyssparseplowndensitysparityrcheckn(LDPE)‘wmatricesnl , @ndwuse
thersum=product - variantrof therloopy belief propagation (BR)ralgorithim to estimate partially corrupted
message bits®, and to bring our Martian safely back home.

To represent the problem using an undirected graphical model, there are two sets of factors you need
to counsider. The first are the unary factors associating Y; with Y; (messages that are similar to the one
receivedparesmoreglikely)s You also need to include the parityschecksymwhichwaresfactorsndefinedvons}
(assigning zero probability to messages that are not valid codewords) which depend on H.

LDPC codes are specified by a binary parity check matrix H € RV*2N_ whose columns correspond to

codeword bits, and rows to parity check constraints. Werndefinenf;;m=nlvifiparity check=P; dependsron

1 Assignment adapted from Brown University CS242 instructed by Erik Sudderth

2https://scienceandtechnology.jpl.nasa.gov /research /research-topics-list /communications-computing-software/deep-space-
communications

3Generated by Neal’s LDPC software http://www.cs.utoronto.ca/~radford/ldpc.software.html

4For optional background information on LDPC codes, see Chap. 47 of MacKay’s Information Theory, Inference, and Learning
Algorithms, which is freely available online: http://www.inference.phy.cam.ac.uk/mackay/itila/.

5If you are curious, Chapter 47 also provides some ideas to speed up loopy belief propagation updates for LDPC codes (Equations
47.9 and 47.10). See also lecture 4.

codeword bit Y}, and H;; = 0 otherwise. Valid codewords are those for which the sum of the bits connected
toreaclhnparityrcheckpasrindicatedsbysHpequalsizerorinmmodulo=2raddition (i.e., the number of “active” bits
must be even). Equivalently, the modulo-2 product of the parity check matrix with the 2N-bit codeword
vector must equal a N-bit vector of zeros. As illustrated in Fig. 1, we can visualize these parity check
constraints via a corresponding factor graph. The parity check matrix H can then be thought of as an
adjacency matrix, where rows correspond to factor (parity) nodes P, columns to variable (message bit)
nodes Y, and ones to edges linking factors to variables.

Figure 1: A factor graph representation of a LDPC code linking four factor (parity constraint)
nodes to eight variable (message bit) nodes. The unary factors encode noisy observations of the
message bits from the output of some communications channel.

(a)

[9 points] Implement code that, given an arbitrary parity check matrix H, constructs a corresponding
factor graph. The parity check factors should evaluate to 1 if an even number of adjacent bits are
active (equal 1), and 0 otherwise. For a given H matrix, define a small test case, and verify that
your graphical model assigns zero probability to invalid codewords.

Implement loopy belief propagation (sum product) for the factor graphs you generate in Part a.

[12 points] Load the N = 128-bit LDPC code provided in ldpc36-128.mat. To evaluate decoding
performance, we assume that the all-zeros codeword Y is sent, which always satisfies any set of
parity checks. Using the rand method, simulate the output Y of a binary symmetric channel:
each transmitted bit is flipped to its complement with error probability ¢ = 0.05, and equal to the
transmitted bit otherwise. Define unary factors for each variable node Y; which equal 1 — € if that
bit equals the “received” bit at the channel output, and € otherwise. Run loopy belief propagation
for 50 iterations of a parallel message update schedule (update all messages in each iteration using
BP equations, based on the messages from the previous iteration), initializing by setting all variable-
to-factor messages to be constant. After the final iteration, plot the estimated posterior probability
(conditioned on the received, noisy message) that each codeword bit equals one. If we decode by
setting each bit to the maximum of its corresponding marginal, would we find the right codeword?

[8 points] Repeat the experiment from part (b) for 10 random channel noise realizations with error
probability € = 0.06. For each trial, run sum-product for 50 iterations. After each iteration, estimate
the codeword by taking the maximum of each bit’s marginal distribution, and evaluate the Hamming
distance (number of differing bits) between the estimated and true (all-zeros) codeword. On a single
plot, display 10 curves showing Hamming distance versus iteration for each trial. Is BP a reliable
decoding algorithm?

(e) [8 points] Repeat part (¢) with two higher error probabilities, e = 0.08 and € = 0.10. Discuss any
qualitative differences in the behavior of the loopy BP decoder.

(f) [12 points] Load the N = 1600-bit LDPC code provided in ldpc86-1600.mat. Using this, we
will replicate the visual decoding demonstration from MacKay’s Fig. 47.5. Start by converting a
40 x 40 binary image to a 1600-bit message vector; you may use the logo image we provide, or create
your own. Encode the message using the provided generator matrix G, and add noise with error
probability € = 0.06 (flip each bit with that probability). For this input, plot images showing the
output of the sum-product decoder after 0, 1, 2, 3, 5, 10, 20, and 30 iterations. The rem method
may be useful for computing modulo-2 sums. You can use the reshape method to easily convert
between images and rasterized message vectors.

(g) [6 points] Repeat part (e) with a higher error probability of € = 0.10, and discuss differences.

Notes:

e This problem requires substantial computing time, so start early. And also you may choose not to
use our provided classes or starter code.

e Error correcting codes are everywhere! This file is very likely stored on your computer in some memory
(disk, RAM, ..) that uses an error correcting code. LDPC codes (like the one you implemented) in
particular are used among other things for deep space communications, for 10GBase-T Ethernet and
are also part of the Wi-Fi 802.11 standard. Loopy belief propagation is essentially a state-of-the-art
decoding algorithm.

€= o0b @l (008

30

iter

ration 25 A —— iteration 1

—— iteration 8 !terat\on 4
iteration 9 20 —— iteration 3

—— iteration 10

—— iteration 4
—— iteration 5
—— iteration 6
iteration 7
—— iteration 8
iteration 9
—— iteration 10

15

10

b 30 —— iteration 1
Z 0.9 . . E . @ 3 . o . 3 iteration 2
) . 3 iterations 6 iterations 9 iterations 12 iterations 15 iterations 18 iterations iteration 3
0 O 5 0 0 [0 0
- =4 - =4 = =4 25 — iteration 4
Lo Lo Lo 0 —— iteration 5
—— iteration 6
0 20 0 0 20 iteration 7
0 30 0 0 e \terat!on 8
iteration 9
15 —— iteration 10
0 20 0 20 0 20 0 20 0 20

0 5 10 15 20 25 30

(8), ¢

